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3 The integral

3.1 The integral of simple functions

De�nition 3.1. Let X be a measure space with measure µ. A simple
function X → K is called integrable i� it vanishes outside of a set of �nite
measure. We denote the vector space of integrable simple functions on X
with respect to the measure µ by S(X,µ).

Exercise 20. Show that the integrable simple functions actually form an
algebra over K.

De�nition 3.2. Let S be a measure space with measure µ. A (µ-)integral
is a collection of linear maps

S(X,µ) → K : f 7→
∫
X
f dµ,

one for each measurable subset X ⊆ S, satisfying the following properties:

• If X has �nite measure, then
∫
X 1 dµ = µ(X), where 1 ∈ S(X,µ) is

the constant function with value 1.

• If X1, X2 ⊆ X are measurable such thatX1∩X2 = ∅ and X1∪X2 = X,
and f ∈ S(X,µ) then

∫
X f dµ =

∫
X1

f dµ+
∫
X2

f dµ.

Proposition 3.3. The integral exists and is unique.

Proof. Exercise.

When it is clear with respect to which measure the integral is taken, the
symbol dµ may be omitted. When the integral is taken with respect to the
whole measure space and it is clear which measure space this is, the subscript
indicating the set over which is integrated may be omitted.

Proposition 3.4. The integral of integrable simple maps has the following

properties:

• If f and g are real valued and f(x) ≤ g(x) for all x ∈ X, then
∫
X f ≤∫

X g.

• If f(x) ≥ 0 for all x ∈ X and A ⊆ X is measurable, then
∫
A f ≤

∫
X f .

•
∣∣∫

X f
∣∣ ≤ ∫

X |f |.

• Suppose X has �nite measure, then
∫
X |f | ≤ ‖f‖sup µ(X). (Here ‖·‖sup

denotes the supremum norm.)

Proof. Exercise.
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Proposition 3.5. The space S(X,µ) carries a seminorm given by

‖f‖1 :=
∫
X
|f |dµ.

Proof. Exercise.

The fact that we only have a seminorm and not necessarily a norm comes
from the inability of the integral to "see" sets of measure zero.

Proposition 3.6. Let f ∈ S(X,µ). Then, ‖f‖1 = 0 i� f vanishes outside

a set of measure zero.

Proof. Exercise.

We also say "almost everywhere" to mean "outside a set of measure zero".

Lemma 3.7. Let (X,M, µ) be a measure space and N an algebra of subsets

of X that generates the σ-algebra M. Let f ∈ S(X,µ) and ε > 0. Then,

there exists g ∈ S(X,µ) such that g is measurable with respect to N (i.e.,

g−1({p}) ⊆ N for all p ∈ K) and such that ‖f − g‖1 < ε.

Proof. Exercise.Hint: Use Proposition 2.37.

3.2 Integrable functions

Lemma 3.8. Let {fn}n∈N be a Cauchy sequence of elements of S(X,µ)
with respect to the seminorm ‖ · ‖1. Then, there exists a subsequence which

converges pointwise almost everywhere to some measurable map f and for

any ε > 0 converges uniformly to f outside of a set of measure less than ε.

Proof. Since {fn}n∈N is Cauchy, there exists a subsequence {fnk
}k∈N such

that

‖fnl
− fnk

‖1 < 2−2k ∀k ∈ N and ∀l ≥ k.

De�ne

Yk := {x ∈ X : |fnk+1
(x)− fnk

(x)| ≥ 2−k} ∀k ∈ N.

Then,

2−kµ(Yk) ≤
∫
Yk

|fnk+1
− fnk

| ≤
∫
X
|fnk+1

− fnk
| ≤ 2−2k ∀k ∈ N.

This implies, µ(Yk) ≤ 2−k for all k ∈ N. De�ne now Zj :=
⋃∞

k=j Yk for all

j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.
Fix ε > 0 and choose j ∈ N such that 21−j < ε. Let x ∈ X \ Zj . Then,

for k ≥ j we have

|fnk+1
(x)− fnk

(x)| < 2−k.
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Thus, the sum
∑∞

k=1 fnk+1
(x) − fnk

(x) converges absolutely. In particular,
the limit

f(x) := lim
l→∞

fnl
(x) = fn1(x) +

∞∑
l=1

fnl+1
(x)− fnl

(x)

exists. For all k ≥ j we have the estimate,

|f(x)− fnk
(x)| =

∣∣∣∣∣
∞∑
l=k

fnl+1
(x)− fnl

(x)

∣∣∣∣∣ ≤
∞∑
l=k

∣∣fnl+1
(x)− fnl

(x)
∣∣ ≤ 21−k

Thus, {fnk
}k∈N converges to f uniformly outside of Zj , where µ(Zj) < ε.

Repeating the argument for arbitrarily small ε we �nd that f is de�ned on
X \Z, where Z :=

⋂∞
j=1 Zj . Furthermore, {fnk

}k∈N converges to f pointwise
on X \Z. Note that µ(Z) = 0. By Theorem 2.19, f is measurable on X \Z.
We extend f to a measurable function on all of X by declaring f(x) = 0 if
x ∈ Z. This completes the proof.

Lemma 3.9. Let {fn}n∈N and {gn}n∈N be Cauchy sequences of elements

of S(X,µ) with respect to the seminorm ‖ · ‖1. Furthermore, assume that

both sequences converge pointwise almost everywhere to the same measurable

function f . Then, the following limits exist and are equal,

lim
n→∞

∫
X
fn = lim

n→∞

∫
X
gn.

Proof. It is easy to see that both limits exist (Exercise.). It remains to
show that they are equal. To this end consider the sequence formed by the
di�erences hn := fn − gn. Then, {hn}n∈N is a ‖ · ‖1-Cauchy sequence that
converges pointwise almost everywhere to zero. We need to show that the
limit limn→∞

∫
X hn (which we already know to exist) is equal to zero.

By Lemma 3.8 there exists a subsequence {hnk
}k∈N with the following

property: For any δ > 0 there exists a set Zδ with µ(Zδ) < δ such that the
subsequence converges absolutely and uniformly to 0 on X \ Zδ.

Choose ε > 0 arbitrary. There exists m ∈ N such that ‖hn − hm‖1 < ε
for all n ≥ m. Let A be a set of �nite measure, so that hm vanishes outside
of A. Then,∫

X\A
|hn| =

∫
X\A

|hn − hm| ≤
∫
X
|hn − hm| < ε ∀n ≥ m.

Set δ := ε/(1 + ‖hm‖sup) and ξ := ε/(1 + µ(A)). Then, there exists l ∈ N
such that nl ≥ m and |hnk

(x)| < ξ for all k ≥ l and x ∈ X \Zδ. This implies,∫
A\Zδ

|hnk
| ≤ µ(A \ Zδ) ξ ≤ µ(A) ξ < ε ∀k ≥ l.
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On the other hand,∫
Zδ

|hn| ≤
∫
Zδ

|hn − hm|+
∫
Zδ

|hm|

≤ ‖hn − hm‖1 + µ(Zδ) ‖hm‖sup < 2ε ∀n ≥ m.

Taking the three integral estimates together we get∣∣∣∣∫
X
hnk

∣∣∣∣ ≤ ∫
X
|hnk

| ≤
∫
X\A

|hnk
|+

∫
A\Zδ

|hnk
|+

∫
Zδ

|hnk
| < 4ε ∀k ≥ l.

Since ε was arbitrary, we conclude

lim
n→∞

∫
X
hn = lim

k→∞

∫
X
hnk

= 0.

We are now ready to de�ne the integral more generally.

De�nition 3.10. A measurable map f on X is called integrable i� there
exists a ‖ · ‖1-Cauchy sequence of integrable simple maps that converges
pointwise to f almost everywhere. We denote the vector space of integrable
maps with values in K by L1(X,µ,K).

Exercise 21. Show that the integrable functions actually form a vector
space.

De�nition 3.11. Let f ∈ L1(X,µ) and {fn}n∈N a Cauchy sequence of
elements of S(X,µ) that converges pointwise to f almost everywhere. We
de�ne the (µ-)integral of f on X by∫

X
f := lim

n→∞

∫
X
fn.

That this de�nition is well follows immediately from Lemma 3.9.

Proposition 3.12. Let f, g be measurable maps and f = g almost every-

where. Then f is integrable i� g is integrable. Moreover, then,∫
f =

∫
g.

Proof. Exercise.

Proposition 3.13. Let f be an integrable map. Then, f vanishes outside a

σ-�nite set.

Proof. Exercise.
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Lemma 3.14. Let f ∈ L1(X,µ) and {fn}n∈N a Cauchy sequence in S(X,µ)
which converges pointwise to f almost everywhere. Then, |f | ∈ L1(X,µ) and
{|fn|}n∈N is a Cauchy sequence in S(X,µ) which converges pointwise to |f |
almost everywhere.

Proof. Exercise.

Proposition 3.15. The space L1(X,µ) carries a seminorm given by

‖f‖1 :=
∫
X
|f |dµ.

Proof. Exercise.

Proposition 3.16. Let {fn}n∈N be a Cauchy sequence of elements of S(X,µ)
converging pointwise to f ∈ L1(X,µ) almost everywhere. Then, {fn}n∈N
converges to f in the ‖ · ‖1-seminorm. In particular, every integrable map

can be approximated arbitrarily well with respect to the ‖ · ‖1-seminorm by

integrable simple maps.

Proof. Fix ε > 0. Since {fn}n∈N is Cauchy there exists k ∈ N such that
‖fn−fm‖1 < ε for all n,m ≥ k. Fix now some n ≥ k. Then, {|fn−fm|}m∈N
is a Cauchy sequence of integrable simple maps and converges pointwise
almost everywhere to the integrable map |fn − f |. (Use Lemma 3.14.) So,
using the de�nition of the integral,

‖fn − f‖1 =
∫
X
|fn − f | = lim

m→∞

∫
X
|fn − fm| = lim

m→∞
‖fn − fm‖1 ≤ ε.

This implies the statement.

Theorem 3.17. The space L1(X,µ) is complete with respect to the semi-

norm ‖ · ‖1.

Proof. Consider a Cauchy sequence {fn}n∈N in L1(X,µ). Using Proposi-
tion 3.16 there is a sequence {gn}n∈N in S(X,µ) such that ‖fn − gn‖ < 1/n
for all n ∈ N. It is easy to see that {gn}n∈N is Cauchy. (Exercise.Show this!)
By Lemma 3.8 there is a subsequence {gnk

}k∈N which converges pointwise
almost everywhere to an integrable function f . Again using Proposition 3.16
this implies that {gnk

}k∈N converges to f in the ‖ · ‖1-seminorm. But since
{gn}n∈N is Cauchy, by Proposition 1.42 it must also converge to f in the
‖ · ‖1-seminorm. In particular, for ε > 0 there exists k ∈ N such that
‖f − gn‖1 < ε/2 for all n ≥ k. But then, for all n ≥ sup{k, 2/ε} we have

‖f − fn‖1 ≤ ‖f − gn‖1 + ‖gn − fn‖1 < ε/2 + 1/n ≤ ε.

That is, {fn}n∈N converges to f in the ‖ · ‖1-seminorm.
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3.3 Elementary properties of the integral

Proposition 3.18. The integral of integrable maps has the following prop-

erties:

• If X1, X2 are measurable such that X = X1∪X2 and X1∩X2 = ∅ then∫
X f =

∫
X1

f +
∫
X2

f

• If f and g are real valued and f(x) ≤ g(x) for almost all x ∈ X, then∫
X f ≤

∫
X g.

• If f and g are real valued and integrable, then sup(f, g) and inf(f, g)
are integrable.

•
∣∣∫

X f
∣∣ ≤ ∫

X |f |.

• Suppose X has �nite measure and f is bounded, then
∫
X |f | ≤ ‖f‖sup µ(X).

Proof. Exercise.

Proposition 3.19. Let X be a measurable space, f : X → R, g : X → R
maps. Then, f + ig : X → C is integrable i� f and g are integrable.

Proof. Exercise.

Theorem 3.20 (Averaging Theorem). Let X be a measure space with σ-
�nite measure µ. Let S ⊆ K be a closed subset and f ∈ L1(X,µ,K). If for

any measurable set A of �nite and positive measure we have

1

µ(A)

∫
A
fdµ ∈ S,

then f(x) ∈ S for almost all x ∈ X.

Proof. Let C := {x ∈ X : f(x) /∈ S}. We need to show that µ(C) = 0.
Assume the contrary, i.e., µ(C) > 0. Write K \ S =

⋃
n∈NBn as a countable

union of closed balls {Bn}n∈N. (Use second countability of K and recall
Proposition 1.36.) Their preimages are measurable and cover C. There
is at least one closed ball Bn such that µ(f−1(Bn)) > 0. Say this closed
ball has center x and radius r. Furthermore, there is a measurable subset
D ⊆ f−1(Bn) such that 0 < µ(D) < ∞. Then,∣∣∣∣ 1

µ(D)

∫
D
f dµ− x

∣∣∣∣ = 1

µ(D)

∣∣∣∣∫
D
(f − x) dµ

∣∣∣∣
≤ 1

µ(D)

∫
D
|f − x|dµ ≤ 1

µ(D)

∫
D
r dµ = r.

In particular, 1
µ(D)

∫
D f dµ ∈ Bn. But Bn ∩ S = ∅, so we get a contradiction

with the assumptions.
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Exercise 22. 1. Explain where in the above proof σ-�niteness was used.
2. Extend the proof to the case where µ is not σ-�nite by replacing f(x) ∈ S
with f(x) ∈ S ∪ {0} in the statement of the Theorem.

Proposition 3.21. Let f ∈ L1 and assume
∫
A f = 0 for all measurable sets

A. Then, f = 0 almost everywhere.

Proof. Exercise.

Proposition 3.22. Let f be an integrable function. Then, ‖f‖1 = 0 i�

f = 0 almost everywhere.

Proof. Exercise.

Proposition 3.23. Let (X,M, µ) be a measure space and N an algebra of

subsets of X that generates the σ-algebra M. Let M∗ denote the completion

of M with respect to µ. Let f ∈ L1(X,M∗, µ) and ε > 0. Then, there

exists g ∈ S(X,µ) such that g is measurable with respect to N and such that

‖f − g‖1 < ε.

Proof. This is clear from combining Proposition 3.16 with Lemma 3.7.

3.4 Integrals and limits

Theorem 3.24. Let {fn}n∈N be a sequence in L1(X,µ) converging to f ∈
L1(X,µ) in the ‖ · ‖1-seminorm. Then, there exists a subsequence which

converges pointwise almost everywhere to f and for any ε > 0 converges

uniformly to f outside of a set of measure less than ε.

Proof. We �rst consider the special case f = 0. The proof proceeds in a way
similar to that of Lemma 3.8. Consider a subsequence such that

‖fnk
‖1 < 2−2k ∀k ∈ N.

De�ne
Yk := {x ∈ X : |fnk

(x)| ≥ 2−k} ∀k ∈ N.
Then,

2−kµ(Yk) ≤
∫
Yk

|fnk
| ≤

∫
X
|fnk

| ≤ 2−2k ∀k ∈ N.

This implies, µ(Yk) ≤ 2−k for all k ∈ N. De�ne now Zj :=
⋃∞

k=j Yk for all

j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.
Fix ε > 0 and choose j ∈ N such that 21−j < ε. If x /∈ Zj then for k ≥ j

we have
|fnk

(x)| < 2−k.

Thus, {fnk
}k∈N converges to 0 uniformly outside of Zj , where µ(Zj) < ε.

Also, {fnk
(x)}k∈N converges to 0 if x /∈ Z :=

⋂∞
j=1 Zj . Note that µ(Z) = 0.

In the general case f 6= 0 we apply the previous proof to the sequence
{fn − f}n∈N.
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Proposition 3.25. Let {fn}n∈N be a Cauchy sequence in L1(X,µ) converg-
ing pointwise to the measurable function f almost everywhere. Then f is

integrable and {fn}n∈N converges to f in the ‖ · ‖1-seminorm.

Proof. By Theorem 3.17 there exists an integrable function g such that
{fn}n∈N converges to g in the ‖ · ‖1-seminorm. By Theorem 3.24 a sub-
sequence {fnk

}k∈N converges to g pointwise almost everywhere, i.e., outside
a set Zg of measure zero. On the other hand {fn}n∈N (and any of its subse-
quences) converges to f almost everywhere, i.e., outside a set Zf of measure
zero. Thus, f = g almost everywhere, i.e., outside the set of measure zero
Zg ∪ Zf . By Proposition 3.12, f is integrable. Moreover, ‖f − g‖1 = 0 and
hence {fn}n∈N converges to f in the ‖ · ‖1-seminorm.

Theorem 3.26 (Monotone Convergence Theorem). Let {fn}n∈N be a point-

wise increasing sequence of real valued functions in L1(X,µ) such that there

exists a constant c ∈ R with∫
X
fn ≤ c ∀n ∈ N.

Then, the sequence {fn}n∈N converges to some function f ∈ L1(X,µ) in the

‖ · ‖1-seminorm and also converges pointwise to f almost everywhere.

Proof. The sequence {
∫
X fn}n∈N is increasing and bounded and thus con-

verges. In particular, it is a Cauchy sequence. But∣∣∣∣∫
X
fn −

∫
X
fm

∣∣∣∣ = ∫
X
|fn − fm| = ‖fn − fm‖1 ∀n,m ∈ N,

since {fn}n∈N is pointwise increasing. So, {fn}n∈N is a Cauchy sequence in
the ‖ · ‖1-seminorm. By completeness (Theorem 3.17) there exists a function
f ∈ L1(X,µ) so that {fn}n∈N converges to f in the ‖ · ‖1-seminorm. By
Theorem 3.24 there exists a subsequence {fnk

}k∈N that converges pointwise
to f almost everywhere. But, since {fn(x)}n∈N is increasing for all x ∈ X, it
must converge for any x ∈ X where a subsequence converges. Thus, {fn}n∈N
converges to f almost everywhere.

Proposition 3.27. Let {fn}n∈N be a sequence of real valued integrable func-

tions such that there exists a real valued integrable function g with fn ≤ g
for all n ∈ N. Then, supn∈N fn is integrable and,

sup
n∈N

∫
X
fn ≤

∫
X
sup
n∈N

fn.

Proof. Since {fn}n∈N is bounded pointwise by g, the function supn∈N fn is
well de�ned. Set gn := sup{f1, . . . , fn} for all n ∈ N. Then, {gn}n∈N is a
pointwise increasing sequence of integrable functions. In particular, the gn



Robert Oeckl � RA NOTES � 19/10/2010 33

are measurable and so is by Theorem 2.19 their limit limn→∞ gn = supn∈N fn.
Moreover,

∫
X gn ≤

∫
X g for all n ∈ N. Thus, we can apply Theorem 3.26 and

there exists an integrable function f to which {gn}n∈N converges pointwise
almost everywhere. Thus, f = supn∈N fn almost everywhere and supn∈N fn
is integrable by Proposition 3.12. For the inequality observe that fk ≤
supn∈N fn for all k ∈ N. Hence,

∫
X fk ≤

∫
X supn∈N fn for all k ∈ N. Taking

the supremum over k ∈ N implies the claimed inequality.

Proposition 3.28 (Fatou's Lemma). Let {fn}n∈N be a sequence of real val-

ued integrable functions such that there exists a real valued integrable function

g with fn ≥ g for all n ∈ N. Assume furthermore that lim infn→∞
∫
X fn ex-

ists. Then, f(x) := lim infn→∞ fn(x) exists almost everywhere and can be

extended to an integrable function on X. Furthermore,∫
X
f ≤ lim inf

n→∞

∫
X
fn.

Proof. Fix k ∈ N and apply Proposition 3.27 to the sequence {−fk+n−1}n∈N.
Thus, hk := infn≥k fn is integrable and∫

X
hk ≤ inf

n≥k

∫
X
fn ≤ lim inf

n→∞

∫
X
fn ∀k ∈ N.

But the sequence {hk}k∈N is increasing and has bounded integral, so we can
apply Theorem 3.26. Thus {hk}k∈N converges pointwise almost everywhere
to an integrable function f and

lim
k→∞

∫
X
hk =

∫
X
f.

Thus, ∫
X
f ≤ lim inf

n→∞

∫
X
fn.

But f(x) = limk→∞ hk(x) = lim infn→∞ fn(x) almost everywhere. This
completes the proof.

Theorem 3.29 (Dominated Convergence Theorem). Let {fn}n∈N be a se-

quence of integrable functions such that there exists a real valued integrable

function g with |fn| ≤ g for all n ∈ N. Assume also that {fn}n∈N con-

verges pointwise almost everywhere to a measurable function f . Then, f is

integrable and {fn}n∈N converges to f in the ‖ · ‖1-seminorm.

Proof. Fix k ∈ N. Consider the set of real valued integrable functions {|fn−
fm|}(n,m)∈I×I where I = {k, k+1, . . . }. Since |fn−fm| ≤ 2g for all n,m ∈ I
we can apply Proposition 3.27 and conclude that gk := supn,m≥k |fn− fm| is
integrable. The {gk}k∈N form a pointwise decreasing sequence and

∫
x gk ≥ 0.

So we can apply Theorem 3.26 to {−gk}k∈N. Since we already know that
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{gk}k∈N converges pointwise to zero almost everywhere we conclude that it
also converges to zero in the ‖ · ‖1-seminorm. This implies that {fn}n∈N
is a Cauchy sequence. (Exercise.Show this!) By Proposition 3.25, f is
integrable and {fn}n∈N converges to f in the ‖ · ‖1-seminorm.

Proposition 3.30. Let f be a measurable function. Then, f is integrable i�

|f | is integrable. Moreover, if |f | ≤ g for some real valued integrable function

g, then f is integrable.

Proof. By Lemma 3.14 integrability of |f | follows from integrability of f . It
remains to show that given g integrable and real valued such that |f | ≤ g,
f is integrable. Firstly, since g is integrable, it vanishes outside a σ-�nite
set A by Proposition 3.13. The same is thus true of f . Let {An}n∈N be an
increasing sequence of sets of �nite measure such that A =

⋃
n∈NAn. By

Theorem 2.23, there is a sequence {fn}n∈N of simple maps that converges
pointwise to f . De�ne a sequence of maps {hn}n∈N as follows:

hn(x) :=

{
fn(x) ifx ∈ An and |fn(x)| ≤ 2g(x)

0 otherwise

It is easy to see that hn is an integrable simple map for each n ∈ N.
(Exercise.Show this!) Moreover, the sequence {hn}n∈N converges point-
wise to f and we have |hn| ≤ 2g for all n ∈ N. Applying Theorem 3.29
shows that f is integrable.

Proposition 3.31. Let {fn}n∈N be a sequence of integrable functions con-

verging pointwise almost everywhere to a measurable function f . Assume

also that there is a constant c ∈ R such that ‖fn‖1 ≤ c for all n ∈ N. Then,

f is integrable.

Proof. {|fn|}n∈N is a sequence of non-negative valued integrable functions
converging pointwise to the measurable function |f |. The sequence {

∫
X |fn|}n∈N

takes values in the compact interval [0, c] and thus must have a point of ac-
cumulation (Proposition 1.31). Together with boundedness from below this
implies the existence of lim infn→∞

∫
x |fn| and we can apply Proposition 3.28.

By assumption |f(x)| = limn→∞ |fn(x)| = lim infn→∞ |fn(x)| almost every-
where, so |f | is integrable. By Proposition 3.30, f is integrable.

3.5 Exercises

Exercise 23 (Lang). Consider the interval [0, 1] with the Lebesgue measure
µ. Let {fn}n∈N be a sequence of continuous functions fn : [0, 1] → [0, 1]
which converges pointwise to 0 everywhere. Show that

lim
n→∞

∫ 1

0
fn dµ = 0.
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Exercise 24 (Lang). Let X,Y be measurable spaces and f : X → Y a
measurable map. Denote the σ-algebra on X by M and the σ-algebra on Y
by N . Let µ be a positive measure on M. De�ne a function ν : N → [0,∞]
as follows: ν(N) := µ(f−1(N)). Show that ν is a positive measure on N .
Moreover show that if g ∈ L1(Y, ν), then g ◦ f ∈ L1(X,µ) and∫

X
g ◦ f dµ =

∫
Y
g dν.

Exercise 25 (Lang, extended). Let X be a measure space with �nite mea-
sure µ and f ∈ L1(X,µ). Show that the limit

lim
n→∞

∫
X
|f |1/n dµ

exists and compute it. Give an example where the limit does not exist if
µ(X) = ∞.

Exercise 26 (Fundamental Theorem of Di�erentiation and Integration).
Let f : R → R be continuously di�erentiable and a, b ∈ R with a ≤ b. Then,∫ b

a
f ′ dµ = f(b)− f(a),

where µ is the Lebesgue measure. [Hint: Note that f ′ is integrable on [a, b].
Consider the map g : R → R given by g(y) :=

∫ y
a f ′ dµ. Show that g is

continuously di�erentiable and that g′ = f ′. Apply the fact that a function
with vanishing derivative is constant to the di�erence f − g to conclude the
proof.]

Exercise 27 (Partial Integration). Let f, g : R → R be continuously di�er-
entiable and a, b ∈ R with a ≤ b. Show that,∫ b

a
fg′ dµ = fg|ba −

∫ b

a
f ′g dµ,

where dµ is the Lebesgue measure.

Exercise 28 (adapted from Lang). Equip the space [0,∞] with the following
topology: A set in U ⊆ [0,∞] is open i� either U is an open subset of [0,∞)
or U = ¬A, where A is a compact subset of [0,∞).

• Show that this indeed de�nes a topology on [0,∞]. Moreover, show
that this topological space is compact.

• LetX be a measurable space and f : X → [0,∞]. Let Y := f−1([0,∞)).
Show that f is a measurable function i� Y is a measurable set and
f |Y : Y → [0,∞) is a measurable function.
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• Let X be a measure space with σ-�nite measure µ. Show that f : X →
[0,∞] is measurable i� there exists an increasing sequence {fn}n∈N of
integrable simple functions fn : X → [0,∞) which converges pointwise
to f . (Recall that an increasing sequence of real numbers which is not
bounded from above is said to converge to ∞.)

• (X and µ as above.) Let f : X → [0,∞] measurable. Let {fn}n∈N be
an increasing sequence of integrable simple maps converging pointwise
to f . De�ne the integral of f to be,

lim
n→∞

∫
X
fn dµ.

Show that this does not depend on the choice of sequence. Also show
that this coincides with the usual de�nition of integral if f(X) ⊆ [0,∞)
and if f is integrable. Formulate and prove an adapted version of the
Monotone Convergence Theorem (Theorem 3.26).

• (X and µ as above.) Let f : X → [0,∞] measurable. For each mea-
surable subset A ⊆ X de�ne

µf (A) :=

∫
A
f dµ.

Show that µf is a positive measure. Let g : X → [0,∞] measurable
and show that, ∫

X
g dµf =

∫
X
fg dµ.


